• Login
    View Item 
    •   UZ eScholar Home
    • Faculty of Engineering & the Built Environment
    • Faculty of Engineering ETDs
    • Faculty of Engineering & The Built Environment e-Theses Collection
    • View Item
    •   UZ eScholar Home
    • Faculty of Engineering & the Built Environment
    • Faculty of Engineering ETDs
    • Faculty of Engineering & The Built Environment e-Theses Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quantifying Total Water Productivity for Multiple-Use Small Reservoirs in Mzingwane Catchment, Zimbabwe

    Thumbnail
    View/Open
    Geoff Mamba.pdf (549.5Kb)
    Date
    2012-10-15
    Author
    Mamba, Geoffrey C
    Metadata
    Show full item record

    Abstract
    The Government of Zimbabwe embarked on construction of small, medium and large multiple-use dams as a strategy to increase the level of water security in the country. Over 10,000 dams have been constructed in communal and large-scale-commercial farming areas. So far, the socio-economic contributions made by medium-to-large scale dams have been fairly documented, but those by small reservoirs are scantily documented. A study on total water productivity was conducted to determine total water productivity and apply this to value and allocate scarce water resources to uses that optimise societal benefits in semi-arid areas. Water productivity gives the value of a product that can be obtained from using a unit amount of water on alternative functions such as domestic use, livestock watering, crop production, fishery, brick making and related uses so that the resources can be wisely allocated to more productive sectors. Eight small reservoirs surrounding Avoca Business Centre in Mzingwane Catchment, Zimbabwe, were studied. Questionnaires were administered and physical measurements carried out on crops, livestock, thatching grass, bricks and fisheries. The results were that donkeys had the highest monetary water productivity of 145 US$/m3 followed by bricks and cattle(32 US$/m3), tomatoes (24 US$/m3), sheep and goats(11 US$/m3), small vegetables (8 US$/m3), green maize(2 US$/m3), dry beans (0.9 US$/m3), fish (0.7 US$/m3), wheat (0.2 US$/m3), domestic water use (0.03 US$/m3) and grass (0.02 US$/m3). Formulation of an allocative strategy recognised scarcity of water resources in terms of dry season reservoir yield, individual-use water productivities and societal values. Two paths for increasing productivity per unit of utilizable water resources were considered for the strategy; (i) depleting developed primary water supply for beneficial purposes by increasing water savings and (ii) producing more output per unit of depleted water by increasing unit water productivity. By re-allocating water based on water productivities within and across sectors, income levels were increased by about 350% from current uses. The results of the study illustrated that water productivity can be used as a strategy for allocating scarce water resources for attaining optimum societal benefits. The water productivity strategy, however, should be complimented with wide stakeholder consultations to derive the optimum societal benefits. Key words: Integrated water resources management; Livelihood; Multiple-use; Small reservoirs; Water productivity; Mzingwane Catchment
    URI
    http://hdl.handle.net/10646/1006
    Sponsor
    WATERnet
    Subject
    DEFINITION OF WATER PRODUCTIVITY .
    DEFINITION OF A WATER RESOURCES ALLOCATIVE STRATEGY
    QUANTIFICATION OF WATER PRODUCTIVITIES .
    RUNOFF AND YIELD ASSESSMENT .
    Collections
    • Faculty of Engineering & The Built Environment e-Theses Collection [137]

    University of Zimbabwe: Educating To Change Lives!
    DSpace software copyright © 2002-2020  DuraSpace | Contact Us | Send Feedback
     

     

    Browse

    All of UZ eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    University of Zimbabwe: Educating To Change Lives!
    DSpace software copyright © 2002-2020  DuraSpace | Contact Us | Send Feedback